10,407 research outputs found

    Many-nodes/many-links spinfoam: the homogeneous and isotropic case

    Full text link
    I compute the Lorentzian EPRL/FK/KKL spinfoam vertex amplitude for regular graphs, with an arbitrary number of links and nodes, and coherent states peaked on a homogeneous and isotropic geometry. This form of the amplitude can be applied for example to a dipole with an arbitrary number of links or to the 4-simplex given by the compete graph on 5 nodes. All the resulting amplitudes have the same support, independently of the graph used, in the large j (large volume) limit. This implies that they all yield the Friedmann equation: I show this in the presence of the cosmological constant. This result indicates that in the semiclassical limit quantum corrections in spinfoam cosmology do not come from just refining the graph, but rather from relaxing the large j limit.Comment: 8 pages, 4 figure

    Theoretical and experimental analysis of an innovative dual-axis tracking linear Fresnel lenses concentrated solar thermal collector

    Get PDF
    Linear concentrating solar thermal systems offer a promising method for harvesting solar energy. In this paper, a model for a novel linear Fresnel lens collector with dual-axis tracking capability is presented. The main objective is to determine the performance curve of this technology by means of both experiment and theoretical analysis. A mathematical model including the optical model of the concentrator and the heat transfer model of the receiver pipe was developed. This tool was validated with experimental data collected using a proof of concept prototype installed in Bourne, UK. The performance curve of the collector was derived for temperatures between 40 °C and 90 °C. The results show that the global efficiency of the collector is limited to less than 20%. The energy losses have been analysed. The optical losses in the lens system accounts for 47% of the total energy dissipated. These are due to absorption, reflection and diffraction in the Fresnel lenses. Furthermore manufacturing error in the lens fabrication has to be considered. One third of the solar radiation collected is lost due to the low solar absorptance of the receiver pipe. Thermal radiation and convection accounts for 6% of the total as relatively low temperatures (up to 90 °C) are involved. In order to increase the performance of the system, it is recommended to install an evacuated receiver and to insulate the recirculation system. Considering data from manufacturers, these improvements could increase the global efficiency up to 55%. Utilising the results from this work, there is the intention of building an improved version of this prototype and to conduct further tests

    BAFF Index and CXCL13 levels in the cerebrospinal fluid associate respectively with intrathecal IgG synthesis and cortical atrophy in multiple sclerosis at clinical onset

    Get PDF
    Abstract Background B lymphocytes are thought to play a relevant role in multiple sclerosis (MS) pathology. The in vivo analysis of intrathecally produced B cell-related cytokines may help to clarify the mechanisms of B cell recruitment and immunoglobulin production within the central nervous system (CNS) in MS. Methods Paired cerebrospinal fluid (CSF) and serum specimens from 40 clinically isolated syndrome suggestive of MS or early-onset relapsing-remitting MS patients (CIS/eRRMS) and 17 healthy controls (HC) were analyzed for the intrathecal synthesis of IgG (quantitative formulae and IgG oligoclonal bands, IgGOB), CXCL13, BAFF, and IL-21. 3D-FLAIR, 3D-DIR, and 3D-T1 MRI sequences were applied to evaluate white matter (WM) and gray matter (GM) lesions and global cortical thickness (gCTh). Results Compared to HC, CIS/eRRMS having IgGOB (IgGOB+, 26 patients) had higher intrathecal IgG indexes ( p \u2009<\u20090.01), lower values of BAFF Index (11.9\u2009\ub1\u20096.1 vs 17.5\u2009\ub1\u20095.2, p \u2009<\u20090.01), and higher CSF CXCL13 levels (27.7\u2009\ub1\u200933.5 vs 0.9\u2009\ub1\u20091.5, p \u2009<\u20090.005). In these patients, BAFF Index but not CSF CXCL13 levels inversely correlated with the intrathecal IgG synthesis ( r \u2009>\u20090.5 and p \u2009<\u20090.05 for all correlations). CSF leukocyte counts were significantly higher in IgGOB+ compared to IgGOB\u2212 ( p \u2009<\u20090.05) and HC ( p \u2009<\u20090.01), and correlated to CSF CXCL13 concentrations ( r 0.77, p \u2009<\u20090.001). The gCTh was significantly lower in patients with higher CSF CXCL13 levels (2.41\u2009\ub1\u20090.1 vs 2.49\u2009\ub1\u20090.1\ua0mm, p \u2009<\u20090.05), while no difference in MRI parameters of WM and GM pathology was observed between IgGOB+ and IgGOB\u2212. Conclusions The intrathecal IgG synthesis inversely correlated with BAFF Index and showed no correlation with CSF CXCL13. These findings seem to indicate that intrathecally synthesized IgG are produced by long-term PCs that have entered the CNS from the peripheral blood, rather than produced by PCs developed in the meningeal follicle-like structures (FLS). In this study, CXCL13 identifies a subgroup of MS patients characterized by ..

    Development and Manufacture of the Coil End Spacers of the LHC Pre-series Dipoles

    Get PDF
    The coil end spacers play an important role in the performance of superconducting coils, as their shape and location determine the mechanical stability of the conductors in the coil ends (and hence the overall coil training performance) and the local field quality. The dipole end spacers are often of a size and a geometry difficult to be industrially series manufactured and measured. Efficiency of the production and related costs are a key issue to achieve the required production rate of the LHC main dipoles at an affordable price. For the latter reasons, a design approach integrating state-of-the-art CAD/CAM optimization techniques allowing to considerably decrease design and machining time was implemented. This paper gives examples and describes the design criteria, the computation methods, the machining and measuring procedures adopted to carry out the pre-series production

    Lack of Temporal Impairment in Patients With Mild Cognitive Impairment

    Get PDF
    In the present study, we investigate possible temporal impairment in patients with mild cognitive impairment (MCI) and the amount of temporal distortions caused by the presentation of emotional facial expressions (anger, shame, and neutral) in MCI patients and controls. Twelve older adults with MCI and 14 healthy older adults were enrolled in the present study. All participants underwent a complete neuropsychological evaluation. We used three timing tasks to tap temporal abilities, namely time bisection (standard intervals lasting 400 and 1600 ms), finger-tapping (free and 1 s), and simple reaction-time tasks. The stimuli used in the time bisection task were facial emotional stimuli expressing anger or shame to investigate a possible contribution of emotional information as previously observed in healthy adults. MCI patients showed temporal abilities comparable to controls. We observed an effect of facial emotional stimuli on time perception when data were analyzed in terms of proportion of long responses, and this result was mainly driven by the temporal overestimation when a facial expression of anger was presented in controls. Results seem to suggest that the severity of the cognitive dysfunction accounts more for subjective temporal impairment than a compromised internal clock

    Design Features and Performance of a 10 T Twin Aperture Model Dipole for LHC

    Get PDF
    A twin-aperture superconducting (sc) dipole model has been designed in collaboration with Finnish and Swedish Institutions and built at CERN. The cable critical current was attained at a central field of 10.5 T at a temperature of 1.77 K after three training quenches only. This model has shown a very good quench performance as well as a robust mechanical behavior over several thermal cycles. This p aper will discuss the design, the innovations of the mechanical structure, and the results obtained during the intensive campaigns of tests

    Can an early-warning system help minimize the impacts of coastal storms? A case study of the 2012 Halloween storm, northern Italy

    Get PDF
    Abstract. The Emilia-Romagna early-warning system (ER-EWS) is a state-of-the-art coastal forecasting system that comprises a series of numerical models (COSMO, ROMS, SWAN and XBeach) to obtain a daily 3-day forecast of coastal storm hazard at eight key sites along the Emilia-Romagna coastline (northern Italy). On the night of 31 October 2012, a major storm event occurred that resulted in elevated water levels (equivalent to a 1-in-20- to 1-in-50-year event) and widespread erosion and flooding. Since this storm happened just 1 month prior to the roll-out of the ER-EWS, the forecast performance related to this event is unknown. The aim of this study was to therefore reanalyse the ER-EWS as if it had been operating a day before the event and determine to what extent the forecasts may have helped reduce storm impacts. Three different reanalysis modes were undertaken: (1) a default forecast (DF) mode based on 3-day wave and water-level forecasts and default XBeach parameters; (2) a measured offshore (MO) forecast mode using wave and water-level measurements and default XBeach parameters; and (3) a calibrated XBeach (CX) mode using measured boundary conditions and an optimized parameter set obtained through an extensive calibration process. The results indicate that, while a "code-red" alert would have been issued for the DF mode, an underprediction of the extreme water levels of this event limited high-hazard forecasts to only two of the eight ER-EWS sites. Forecasts based on measured offshore conditions (the MO mode) more-accurately indicate high-hazard conditions for all eight sites. Further considerable improvements are observed using an optimized XBeach parameter set (the CX mode) compared to default parameters. A series of what-if scenarios at one of the sites show that artificial dunes, which are a common management strategy along this coastline, could have hypothetically been constructed as an emergency procedure to potentially reduce storm impacts

    NMR profiling of grape musts from some Italian regions

    Get PDF
    With wine fraud, being a widespread problem [1], the need for more sophisticated and precise analytical methods of its detection remains ever persistent. Nuclear magnetic resonance (NMR) spectroscopy has been widely used for analysis of wine in recent years [2,3], but wine musts were much less studied; in fact, only one paper dealt with the NMR spectra of actual musts [4]. Difficulties arise mostly because grape musts are “live” objects, which undergo rapid fermentation at room temperature, if not inhibited either by freezing or chemical preservative; but even such measures are not sufficient to halt it completely [5]. We have investigated over 300 samples of grape must from 17 of 20 different Italian regions using 1H NMR spectroscopy with water signal suppression, postprocessing in the MatLab software with dynamic alignment [6] and optimized binning [7] to alleviate the effect of fermentation on the chemical shifts of mobile protons. After that, multivariate statistics was performed with techniques such as PCA, PLS-DA and OPLS-DA with respect to various group parameters such as regions, vitivinicultural zones, harvest periods and grape varieties. Advantages and drawbacks of each method were addresse

    Asymptotics of LQG fusion coefficients

    Full text link
    The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in Loop Quantum Gravity. In this paper we give a simple analytic formula of the EPRL fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2)LĂ—SU(2)RSU(2)_L\times SU(2)_R semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.Comment: 14 pages, minor change
    • …
    corecore